Электроизоляционные материалы

План.

1. Введение

Свойства электроизоляционных материалов.

2. Основная часть

Электроизоляционные масла (трансформаторное, конденсаторное, вазелиновое, кабельное).

Жидкие синтетические диэлектрики.

Растительные масла.

Природные смолы.

Битумы.

Воскообразные диэлектрики (парафин, церезин, вазелин).

  1. Список используемой литературы

Свойства электроизоляционных материалов.

Характеристика важная для оценки качества материалов, применяемых для защитных покровов (шланги кабелей, опрессовка конденсаторов, компаундные заливки, лаковые покрытия деталей) — влагопроницаемость электроизоляционных материалов, т. е способность их пропускать сквозь себя пары воды.

Благодаря наличию мельчайшей пористости большинство материалов обладает поддающейся измерению влагопроницаемостью. Только для стёкол, хорошо обожжённой керамики и металлов влагопроницаемость почти равна нулю.

Можно определить количество влаги m (в микро граммах), проходящее за время = 556; через участок поверхности S [см 2 ] слоя изоляционного материала толщиной h [см] под действием разности давлений водяных паров р1 и р2 [ мм. рт. ст. ] с двух сторон слоя, по формуле:

m=П

Это уравнение аналогично уравнению для прохождения через тело электрического тока; разность давлений (р1 — р2) аналогична разности потенциалов, m/t — величине тока, а h/ПS — сопротивлению тела; коэффициент П, аналогичный удельной объёмной проводимости, есть влагопроницаемость данного материала.

Влагопроницаемость для различных материалов изменяется в широких пределах. Например: для парафина значение П равно 0,0007; для полистирола — 0,03; для триацетата целлюлозы — около 1 мкг /(см- ч — мм рт. ст.).

Чтобы уменьшить влагопроницаемость пористых изоляционных материалов широко применяется их пропитка. Необходимо помнить, что пропитка волокнистых целлюлозных материалов и других пористых органических диэлектриков даёт лишь замедление увлажнения материала, не влияя на величину = 554; после длительного воздействия влажности. Это связано с тем, что молекулы пропиточных веществ, имеющие весьма большие размеры по сравнению с размерами молекул воды, не в состоянии создать полную непроницаемость пор материала для влаги, а в наиболее мелкие поры пропитываемого материала они вообще не могут проникнуть.

В тропических условиях, при длительном использовании электроаппаратуры, особенно, на органических диэлектриках наблюдается развитие плесени. Плесень ухудшает: удельное поверхностное сопротивление диэлектриков, приводит к росту потерь и ухудшению механической прочности изоляции, вызывает коррозию соприкасающихся с ней металлических частей.

Электроизоляционные материалы и различные электротехнические изделия испытывают на тропикостойкость, длительно выдерживая при температуре 40 — 500С в воздухе, насыщенном парами воды, и при воздействии культур плесневых грибков (точные условия этих испытаний установлены Международной электротехнической комиссией), после чего определяется степень ухудшения электрических и других свойств исследуемых образцов и отмечается интенсивность роста плесени на них.

С целью повышения плесенеустойчивости органической электрической изоляции в её состав вводят добавки фунгицидов, т. е. веществ, ядовитых для плесневых грибков и задерживающих их развитие, или же покрывают изоляцию лаком, содержащим фунгициды. Имеется большое число рецептур фунгицидов, пригодных для введения в те или иные электроизоляционные материалы. К числу сильнодействующих фунгицидов принадлежат, в частности, некоторые органические соединения, содержащие азот, хлор, ртуть.

Наиболее стойкими к образованию плесени являются неорганические диэлектрики — керамика, стёкла, слюда, кремнийорганические материалы и некоторые из органических, например эпоксидные смолы, фторопласт — 4, полиэтилен, полистирол.

Наиболее уязвимы для развития плесени целлюлозные материалы, в том числе и пропитанные (гетинакс, текстолит), канифоль, масляные лаки и др.

В некоторых случаях для электроизоляционных и других материалов опасны транспортировка и хранение на складах в тропических условиях. А также приходится считаться с возможностью повреждения электрической изоляции, кабельных оболочек термитами и животными.

Электроизоляционные масла.

Трансформаторное масло, из всех жидких электроизоляционных материалов находит наибольшее применение в электротехнике, им заливают силовые трансформаторы.

Его применяют: во-первых, для заполнения пор в волокнистой изоляции, а также промежутков между проводами обмоток и между обмотками и баком трансформатора, значительно повышая электрическую прочность изоляции;

во-вторых, оно улучшает отвод теплоты, выделяемой за счёт потерь в обмотках и сердечнике трансформатора. Лишь некоторые силовые и измерительные трансформаторы выполняются без заливки маслом («сухие трансформаторы »);

в-третьих для изготовления масляных выключателей высокого напряжения. В этих аппаратах разрыв электрической дуги между расходящимися контактами выключателя происходит в масле или в находящихся под повышенным давлением газах, выделяемых маслом под действием высокой температуры дуги; это способствует охлаждению канала дуги и быстрому её гашению.

в-четвертых для заливки маслонаполненных вводов, некоторых типов реакторов, реостатов и других электрических аппаратов.

Трансформаторное масло — это жидкость от почти бесцветной до тёмно — жёлтого цвета, по химическому составу представляющая собой смесь различных углеводородов. Трансформаторное масло — горючая жидкость.

Трансформаторные масла получают из нефти посредством её ступенчатой перегонки с выделением на каждой ступени определённой (по температуре кипения) фракции и последующей тщательной очистки от химических нестойких примесей в результате обработки серной кислотой, а затем щёлочью, промывки водой и сушки.

Электрическая прочность масла — величина, чрезвычайно чувствительная к его увлажнению. Незначительная примесь воды в масле резко снижает его электрическую прочность. Это объясняется тем, что воды (около 80) значительно выше, чем масла (чистого масла около 2,2). Под действием сил электрического поля капельки эмульгированной в масле воды втягиваются в места, где напряжённость электрического поля особенно велика и где, собственно и начинается развитие пробоя. Ещё более резко понижается электрическая прочность масла, если в нём, кроме воды содержатся волокнистые примеси. Волокна бумаги, хлопчатобумажной пряжи, легко впитывают в себя влагу из масла, причём значительно возрастает их = 541;r. Под действием сил поля увлажнённые волокна не только втягиваются в места, где поле сильнее, но и располагаются по направлению силовых линий, что весьма облегчает пробой масла.

Вода легко может попасть в масло при его перевозке, хранении, переливки в недостаточно просушенную тару и т. п., поэтому для сушки масла имеется несколько способов: пропускание под давлением сквозь фильтровальную бумагу в специальных установках — фильтропрессах; воздействие на масло центробежной силы в центрифуге, причём вода, имеющая плотность больше, чем у масла, отжимается с периферии сосуда и отделяется от масла; обработка адсорбентами; распыление нагретого масла в камере, заполненной азотом и т. п. При сушке электрическая плотность увлажнённого масла восстанавливается.

Конденсаторное масло служит для пропитки бумажных конденсаторов, в особенности силовых, предназначенных для компенсации индуктивного фазового сдвига. При пропитке бумажного диэлектрика повышаются как его, так и ЕПР; то и другое даёт возможность уменьшить габаритные размеры, массу и стоимость конденсатора при заданном рабочем напряжении, частоте и ёмкости.

Нефтяное конденсаторное масло имеет плотность 0,86 — 0,89 Мг/м3, температуру застывания минус 450С, = 541;r=2,1 = 624;= 472;2,3 и tg = 540;= 472;0,002 (при частоте 1 кГц).

Вазелиновое конденсаторное масло по плотности и электрическим свойствам близко к нефтяному, но имеет более высокую температуру застывания (-50С). Электрическая прочность конденсаторных масел не менее 20 МВ/м.

Кабельные масла используются в производстве силовых электрических кабелей; Пропитывая бумажную изоляцию этих кабелей, они повышают её электрическую прочность, а также способствуют отводу теплоты потерь. Кабельные масла бывают различных типов. Для пропитки изоляции силовых кабелей на рабочие напряжения до 35 кВ в свинцовых или алюминиевых оболочках (кабели с вязкой пропиткой) применяется масло марки КМ-25 с кинематической вязкостью не менее 23 мм2/c при 1000С, температурой застывания не выше минус 100С и температурой вспышки не ниже +2200С. Для увеличения вязкости к этому маслу дополнительно добавляется канифоль или же синтетический загуститель.

В маслонаполненных кабелях используются менее вязкие масла. Так, масло марки МН-4 применяется для маслонаполненных кабелей на напряжения 110−220 кВ, в которых во время эксплуатации с помощью подпитывающих устройств поддерживается избыточное давление 0,3 — 0,4 МПа.

Для маслонаполненных кабелей высокого давления (до 1,5 МПа) на напряжения от 110−500 кВ, прокладываемых в стальных трубах, применяется особо тщательно очищенное масло марки С-200.

Жидкие синтетические диэлектрики.

Для пропитки конденсаторов с целью получения повышенной ёмкости в данных габаритных размерах конденсатора желательно иметь жидкий полярный диэлектрик с более высоким, чем у неполярных нефтяных масел, значением = 541;r. Нефтяные масла склонны к электрическому старению, т. е. они, могут ухудшать свои свойства под действием электрического поля высокой напряжённости. Жидкие синтетические диэлектрики, по свойствам превосходят нефтяные электроизоляционные масла.

Рассмотрим наиболее важные:

Хлорированные углеводороды (получаются из различных углеводородов путём замены в их молекулах некоторых (или даже всех) атомов водорода атомами хлора). Широкое применение имеют полярные продукты хлорирования дифенила, имеющие общий состав С12Н10-nCLn (n — степень хлорирования от 3 до 6).

Хлорированные дифенилы обладают = 541;r, повышенной по сравнению с неполярными нефтяными маслами, поэтому замена масел на хлорированные дифенилы при пропитке конденсаторов уменьшает объём конденсатора (при этой же электрической ёмкости) почти в 2 раза. Преимуществом хлорированных дифенилов является его не горючесть.

Однако хлорированные дифенилы имеют и свои недостатки: они сильно токсичны, (из-за этого применение их для пропитки конденсаторов в некоторых странах запрещено законом); на их электроизоляционные свойства весьма значительно влияют примеси (наличие которых сказывается на потерях сквозной электропроводности при повышенной температуре); заметное снижение их = 541;r и, следовательно ёмкости пропитанных хлорированными дифенилами конденсаторов при пониженных температурах; хлорированные дифенилы обладают сравнительно высокой вязкостью, что в некоторых случаях вызывает необходимость разбавления их менее вязкими хлорированными углеводородами.

Фтороорганические жидкости имеют малый tg = 540;= 472;,= 472;ничтожно малую гигроскопичность и высокую нагревостойкость. Некоторые фтороорганические жидкости могут длительно работать при температуре 2000С и выше. Пары некоторых фтороорганических жидкостей имеют высокую для газообразных диэлектриков электрическую прочность.

Свойства характерные для фтороорганических жидкостей малая вязкость, низкое поверхностное натяжение (что благоприятствует пропитке пористой изоляции), высокий температурный коэффициент объёмного расширения, высокая летучесть. Последнее обстоятельство требует герметизации аппаратов заливаемых фтороорганическими жидкостями.

Фтороорганические жидкости способны обеспечить интенсивный отвод теплоты потерь от охлаждаемых ими обмоток и магнитопроводов, чем нефтяные масла или кремнийорганические жидкости. Существуют специальные конструкции малогабаритных электротехнических устройств с заливкой фтороорганическими жидкостями, в которых для улучшения отвода теплоты используется испарение жидкости с последующей конденсацией её в охладителе и возвратом в устройство (кипящая изоляция); при этом теплота испарения отнимается от охлаждаемых обмоток, а наличие в пространстве над жидкостью фтороорганических паров, особенно под повышенным давлением, значительно увеличивает электрическую прочность газовой среды в аппарате.